Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Photochem Photobiol Sci ; 22(7): 1573-1590, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2264697

ABSTRACT

The urgent demand for scalable, potent, color variable, and comfortable antimicrobial textiles as personal protection equipment (PPE) to help reduce infection transmission in hospitals and healthcare facilities has significantly increased since the start of the COVID-19 pandemic. Here, we explored photodynamic antimicrobial polyethylene terephthalate/cotton (TC) blended fabrics comprised of photosensitizer-conjugated cotton fibers and polyethylene terephthalate (PET) fibers dyed with disperse dyes. A small library of TC blended fabrics was constructed wherein the PET fibers were embedded with traditional disperse dyes dominating the fabric color, thereby enabling variable color expression, while the cotton fibers were covalently coupled with the photosensitizer thionine acetate as the microbicidal agent. Physical (SEM, CLSM, TGA, XPS and mechanical strength) and colorimetric (K/S and CIELab values) characterization methods were employed to investigate the resultant fabrics, and photooxidation studies with DPBF demonstrated the ability of these materials to generate reactive oxygen species (i.e., singlet oxygen) upon visible light illumination. The best results demonstrated a photodynamic inactivation of 99.985% (~ 3.82 log unit reduction, P = 0.0021) against Gram-positive S. aureus, and detection limit inactivation (99.99%, 4 log unit reduction, P ≤ 0.0001) against Gram-negative E. coli upon illumination with visible light (60 min; ~ 300 mW/cm2; λ ≥ 420 nm). Enveloped human coronavirus 229E showed a photodynamic susceptibility of ~ 99.99% inactivation after 60 min illumination (400-700 nm, 65 ± 5 mW/cm2). The presence of the disperse dyes on the fabrics showed no significant effects on the aPDI results, and furthermore, appeared to provide the photosensitizer with some measure of protection from photobleaching, thus improving the photostability of the dual-dyed fabrics. Taken together, these results suggest the feasibility of low cost, scalable and color variable thionine-conjugated TC blended fabrics as potent self-disinfecting textiles.

2.
Advanced Science ; 8(11), 2021.
Article in English | ProQuest Central | ID: covidwho-1870661

ABSTRACT

While the ongoing COVID‐19 pandemic affirms an urgent global need for effective vaccines as second and third infection waves are spreading worldwide and generating new mutant virus strains, it has also revealed the importance of mitigating the transmission of SARS‐CoV‐2 through the introduction of restrictive social practices. Here, it is demonstrated that an architecturally‐ and chemically‐diverse family of nanostructured anionic polymers yield a rapid and continuous disinfecting alternative to inactivate coronaviruses and prevent their transmission from contact with contaminated surfaces. Operating on a dramatic pH‐drop mechanism along the polymer/pathogen interface, polymers of this archetype inactivate the SARS‐CoV‐2 virus, as well as a human coronavirus surrogate (HCoV‐229E), to the minimum detection limit within minutes. Application of these anionic polymers to frequently touched surfaces in medical, educational, and public‐transportation facilities, or personal protection equipment, can provide rapid and repetitive protection without detrimental health or environmental complications.

3.
Free Radic Biol Med ; 175: 216-225, 2021 11 01.
Article in English | MEDLINE | ID: covidwho-1377715

ABSTRACT

Nitric oxide (NO) plays an important role in cardiovascular and immune systems. Quantification of blood nitrite and nitrate, two relatively stable metabolites of NO (generally as NOx), has been acknowledged, in part, representing NO bioactivity. Dysregulation of NOx had been reported in SARS-CoV-2 infected populations, but whether patients recovered from COVID-19 disease present with restored NOx is unknown. In this study, serum NO2- and NO3- were quantified and analyzed among 109 recovered adults in comparison to a control group of 166 uninfected adults. Nitrite or nitrate levels were not significantly different among mild-, common-, severe- and critical-type patients. However, these recovered patients had dramatically lower NO2- and NO2-/NO3- than the uninfected group (p < 0.0001), with significantly higher NO3- levels (p = 0.0023) than the uninfected group. Nitrate and nitrite/nitrate were positively and negatively correlated with patient age, respectively, with age 65 being a turning point among recovered patients. These results indicate that low NO2-, low NO2-/NO3- and high NO3- may be potential biomarkers of long-term poor or irreversible outcomes after SARS-CoV-2 infection. It suggests that NO metabolites might serve as a predictor to track the health status of recovered COVID-19 patients, highlighting the need to elucidate the role of NO after SARS-CoV-2 infection.


Subject(s)
COVID-19 , Nitrites , Adult , Aged , Biomarkers , Humans , Nitrates , Nitric Oxide , SARS-CoV-2
4.
Front Med (Lausanne) ; 8: 657837, 2021.
Article in English | MEDLINE | ID: covidwho-1359198

ABSTRACT

The dual threats posed by the COVID-19 pandemic and hospital-acquired infections (HAIs) have emphasized the urgent need for self-disinfecting materials for infection control. Despite their highly potent antimicrobial activity, the adoption of photoactive materials to reduce infection transmission in hospitals and related healthcare facilities has been severely hampered by the lack of scalable and cost-effective manufacturing, in which case high-volume production methods for fabricating aPDI-based materials are needed. To address this issue here, we examined the antimicrobial efficacy of a simple bicomponent spray coating composed of the commercially-available UV-photocrosslinkable polymer N-methyl-4(4'-formyl-styryl)pyridinium methosulfate acetal poly(vinyl alcohol) (SbQ-PVA) and one of three aPDI photosensitizers (PSs): zinc-tetra(4-N-methylpyridyl)porphine (ZnTMPyP4+), methylene blue (MB), and Rose Bengal (RB). We applied these photodynamic coatings, collectively termed SbQ-PVA/PS, to a variety of commercially available materials. Scanning electron microscopy (SEM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) confirmed the successful application of the coatings, while inductively coupled plasma-optical emission spectroscopy (ICP-OES) revealed a photosensitizer loading of 0.09-0.78 nmol PS/mg material. The antimicrobial efficacy of the coated materials was evaluated against methicillin-susceptible Staphylococcus aureus ATCC-29213 and human coronavirus strain HCoV-229E. Upon illumination with visible light (60 min, 400-700 nm, 65 ± 5 mW/cm2), the coated materials inactivated S. aureus by 97-99.999% and HCoV-229E by 92-99.999%, depending on the material and PS employed. Photobleaching studies employing HCoV-229E demonstrated detection limit inactivation (99.999%) even after exposure for 4 weeks to indoor ambient room lighting. Taken together, these results demonstrate the potential for photodynamic SbQ-PVA/PS coatings to be universally applied to a wide range of materials for effectively reducing pathogen transmission.

5.
Free Radic Biol Med ; 163: 153-162, 2021 02 01.
Article in English | MEDLINE | ID: covidwho-1065088

ABSTRACT

Nitric oxide (NO) is a free radical playing an important pathophysiological role in cardiovascular and immune systems. Recent studies reported that NO levels were significantly lower in patients with COVID-19, which was suggested to be closely related to vascular dysfunction and immune inflammation among them. In this review, we examine the potential role of NO during SARS-CoV-2 infection from the perspective of the unique physical, chemical and biological properties and potential mechanisms of NO in COVID-19, as well as possible therapeutic strategies using inhaled NO. We also discuss the limits of NO treatment, and the future application of this approach in prevention and therapy of COVID-19.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Anticoagulants/therapeutic use , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Lung/drug effects , Nitric Oxide/therapeutic use , Administration, Inhalation , Anti-Inflammatory Agents/blood , Anticoagulants/blood , Antiviral Agents/blood , COVID-19/blood , COVID-19/pathology , COVID-19/virology , Endothelial Cells/drug effects , Endothelial Cells/pathology , Endothelial Cells/virology , Humans , Inflammation , Lung/blood supply , Lung/virology , Mitochondria/drug effects , Mitochondria/virology , Nitric Oxide/blood , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , Severity of Illness Index , Vasodilation/drug effects
6.
ACS Appl Mater Interfaces ; 13(1): 155-163, 2021 Jan 13.
Article in English | MEDLINE | ID: covidwho-997777

ABSTRACT

A substantial increase in the risk of hospital-acquired infections (HAIs) has greatly impacted the global healthcare industry. Harmful pathogens adhere to a variety of surfaces and infect personnel on contact, thereby promoting transmission to new hosts. This is particularly worrisome in the case of antibiotic-resistant pathogens, which constitute a growing threat to human health worldwide and require new preventative routes of disinfection. In this study, we have incorporated different loading levels of a porphyrin photosensitizer capable of generating reactive singlet oxygen in the presence of O2 and visible light in a water-soluble, photo-cross-linkable polymer coating, which was subsequently deposited on polymer microfibers. Two different application methods are considered, and the morphological and chemical characteristics of these coated fibers are analyzed to detect the presence of the coating and photosensitizer. To discern the efficacy of the fibers against pathogenic bacteria, photodynamic inactivation has been performed on two different bacterial strains, Staphylococcus aureus and antibiotic-resistant Escherichia coli, with population reductions of >99.9999 and 99.6%, respectively, after exposure to visible light for 1 h. In response to the current COVID-19 pandemic, we also confirm that these coated fibers can inactivate a human common cold coronavirus serving as a surrogate for the SARS-CoV-2 virus.


Subject(s)
COVID-19/virology , Photosensitizing Agents/pharmacology , Polymers/pharmacology , COVID-19/prevention & control , Escherichia coli/drug effects , Escherichia coli/pathogenicity , Humans , Iatrogenic Disease/prevention & control , Light , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Microfibrils/chemistry , Pandemics , Photosensitizing Agents/chemistry , Polymers/chemistry , Porphyrins/chemistry , Porphyrins/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , Singlet Oxygen
SELECTION OF CITATIONS
SEARCH DETAIL